Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(3-1): 034207, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632798

RESUMO

Soliton gases represent large random soliton ensembles in physical systems that display integrable dynamics at leading order. We report hydrodynamic experiments in which we investigate the interaction between two beams or jets of soliton gases having nearly identical amplitudes but opposite velocities of the same magnitude. The space-time evolution of the two interacting soliton gas jets is recorded in a 140-m-long water tank where the dynamics is described at leading order by the focusing one-dimensional nonlinear Schrödinger equation. Varying the relative initial velocity of the two species of soliton gas, we change their interaction strength and we measure the macroscopic soliton gas density and velocity changes due to the interaction. Our experimental results are found to be in good quantitative agreement with predictions of the spectral kinetic theory of soliton gas despite the presence of perturbative higher-order effects that break the integrability of the wave dynamics.

2.
Phys Rev Lett ; 130(5): 056901, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36800474

RESUMO

The engineering of synthetic materials characterized by more than one class of topological invariants is one of the current challenges of solid-state based and synthetic materials. Using a synthetic photonic lattice implemented in a two-coupled ring system we engineer an anomalous Floquet metal that is gapless in the bulk and shows simultaneously two different topological properties. On the one hand, this synthetic lattice presents bands characterized by a winding number. The winding emerges from the breakup of inversion symmetry, and it directly relates to the appearance of Bloch suboscillations within its bulk. On the other hand, the Floquet nature of the lattice results in well-known anomalous insulating phases with topological edge states. The combination of broken inversion symmetry and periodic time modulation studied here enriches the variety of topological phases available in lattices subject to Floquet driving and suggests the possible emergence of novel phases when periodic modulation is combined with the breakup of spatial symmetries.

3.
Opt Lett ; 47(14): 3560-3563, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838730

RESUMO

We experimentally investigate higher-order seeded modulation instability in an optical fiber experiment. The recirculating loop configuration with round trip losses compensation enables the observation in single-shot of the spatiotemporal evolution of an initially modulated continuous field revealing intricate yet deterministic dynamics. By tuning the modulation period, a continuous transition between perfectly coherent and purely noise-driven dynamics is observed that we characterize by means of a statistical study.

4.
Sci Rep ; 12(1): 10386, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35726005

RESUMO

We investigate numerically and experimentally the concept of nonlinear dispersion relation (NDR) in the context of partially coherent waves propagating in a one-dimensional water tank. The nonlinear random waves have a narrow-bandwidth Fourier spectrum and are described at leading order by the one-dimensional nonlinear Schrödinger equation. The problem is considered in the framework of integrable turbulence in which solitons play a key role. By using a limited number of wave gauges, we accurately measure the NDR of the slowly varying envelope of the deep-water waves. This enables the precise characterization of the frequency shift and the broadening of the NDR while also revealing the presence of solitons. Moreover, our analysis shows that the shape and the broadening of the NDR provides signatures of the deviation from integrable turbulence that is induced by high order effects in experiments. We also compare our experimental observations with numerical simulations of Dysthe and of Euler equations.

5.
Sci Rep ; 11(1): 23606, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880276

RESUMO

In many physical systems such as ocean waves, nonlinear optics, plasma physics etc., extreme events and rare fluctuations of a wave field have been widely observed and discussed. In the field of oceanography and naval architecture, their understanding is fundamental for a correct design of platforms and ships, and for performing safe operations at sea. Here, we report a measurement of an impressive and unique wave packet recorded in the Bay of Biscay in the North-East of the Atlantic Ocean. An analysis of the spatial extension of the packet that includes three large waves reveals that it extents for more than 1 km, with individual crests moving faster than 100 km/h. The central and largest wave in the packet was 27.8 m high in a sea with significant wave height of 11 m. A detailed analysis of the data using the nonlinear Fourier analysis reveals that the wave packet is characterized by a non trivial nonlinear content. This observation opens a new paradigm which requires new understanding of the dynamics of ocean waves and, more in general, of nonlinear and dispersive waves.

6.
Phys Rev E ; 104(4-1): 044213, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34781490

RESUMO

We consider a spatially extended box-shaped wave field that consists of a plane wave (the condensate) in the middle and equals zero at the edges, in the framework of the focusing one-dimensional nonlinear Schrodinger equation. Within the inverse scattering transform theory, the scattering data for this wave field is presented by the continuous spectrum of the nonlinear radiation and the soliton eigenvalues together with their norming constants; the number of solitons N is proportional to the box width. We remove the continuous spectrum from the scattering data and find analytically the specific corrections to the soliton norming constants that arise due to the removal procedure. The corrected soliton parameters correspond to symmetric in space N-soliton solution, as we demonstrate analytically in the paper. Generating this solution numerically for N up to 1024, we observe that, at large N, it converges asymptotically to the condensate, representing its solitonic model. Our methods can be generalized for other strongly nonlinear wave fields, as we demonstrate for the hyperbolic secant potential, building its solitonic model as well.

7.
Phys Rev E ; 103(4-1): 042205, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005925

RESUMO

We numerically realize a breather gas for the focusing nonlinear Schrödinger equation. This is done by building a random ensemble of N∼50 breathers via the Darboux transform recursive scheme in high-precision arithmetics. Three types of breather gases are synthesized according to the three prototypical spectral configurations corresponding the Akhmediev, Kuznetsov-Ma, and Peregrine breathers as elementary quasiparticles of the respective gases. The interaction properties of the constructed breather gases are investigated by propagating through them a "trial" generic (Tajiri-Watanabe) breather and comparing the mean propagation velocity with the predictions of the recently developed spectral kinetic theory [El and Tovbis, Phys. Rev. E 101, 052207 (2020)2470-004510.1103/PhysRevE.101.052207].

8.
Opt Lett ; 46(2): 298-301, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33449014

RESUMO

We report phase and amplitude measurements of large coherent structures originating from the noise-induced modulation instability in optical fibers. By using a specifically designed time-lens system (SEAHORSE) in which aberrations are compensated, the complex field is recorded in single-shot over long durations of 200 ps with sub-picosecond resolution. Signatures of Akhmediev breather-like patterns are identified in the ultrafast temporal dynamics in very good agreement with numerical predictions based on the nonlinear Schrödinger equation.

9.
Phys Rev Lett ; 125(26): 264101, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449735

RESUMO

Soliton gases represent large random soliton ensembles in physical systems that exhibit integrable dynamics at the leading order. Despite significant theoretical developments and observational evidence of ubiquity of soliton gases in fluids and optical media, their controlled experimental realization has been missing. We report a controlled synthesis of a dense soliton gas in deep-water surface gravity waves using the tools of nonlinear spectral theory [inverse scattering transform (IST)] for the one-dimensional focusing nonlinear Schrödinger equation. The soliton gas is experimentally generated in a one-dimensional water tank where we demonstrate that we can control and measure the density of states, i.e., the probability density function parametrizing the soliton gas in the IST spectral phase space. Nonlinear spectral analysis of the generated hydrodynamic soliton gas reveals that the density of states slowly changes under the influence of perturbative higher-order effects that break the integrability of the wave dynamics.

10.
Phys Rev Lett ; 123(23): 234102, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868438

RESUMO

We investigate the fundamental phenomenon of the spontaneous, noise-induced modulational instability (MI) of a plane wave. The statistical properties of the noise-induced MI, observed previously in numerical simulations and in experiments, have not been explained theoretically. In this Letter, using the inverse scattering transform (IST) formalism, we propose a theoretical model of the asymptotic stage of the noise-induced MI based on N-soliton solutions of the focusing one-dimensional nonlinear Schrödinger equation. Specifically, we use ensembles of N-soliton bound states having a special semiclassical distribution of the IST eigenvalues, together with random phases for norming constants. To verify our model, we employ a recently developed numerical approach to construct an ensemble of N-soliton solutions with a large number of solitons, N∼100. Our investigation reveals a remarkable agreement between spectral (Fourier) and statistical properties of the long-term evolution of the MI and those of the constructed multisoliton, random-phase bound states. Our results can be generalized to a broad class of strongly nonlinear integrable turbulence problems.

11.
Phys Rev E ; 100(3-1): 032212, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31640032

RESUMO

We examine statistical properties of integrable turbulence in the defocusing and focusing regimes of one-dimensional small-dispersion nonlinear Schrödinger equation (1D-NLSE). Specifically, we study the 1D-NLSE evolution of partially coherent waves having Gaussian statistics at time t=0. Using short time asymptotic expansions and taking advantage of the scale separation in the semiclassical regime we obtain a simple explicit formula describing an early stage of the evolution of the fourth moment of the random wave field amplitude, a quantitative measure of the "tailedness" of the probability density function. Our results show excellent agreement with numerical simulations of the full 1D-NLSE random field dynamics and provide insight into the emergence of the well-known phenomenon of heavy (respectively, low) tails of the statistical distribution occurring in the focusing (respectively, defocusing) regime of 1D-NLSE.

12.
Phys Rev Lett ; 123(9): 093902, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31524480

RESUMO

We present an optical fiber experiment in which we examine the space-time evolution of a modulationally unstable plane wave initially perturbed by a small noise. Using a recirculating fiber loop as an experimental platform, we report the single-shot observation of the noise-driven development of breather structures from the early stage to the long-term evolution of modulation instability. Performing single-point statistical analysis of optical power recorded in the experiments, we observe decaying oscillations of the second-order moment together with the exponential distribution in the long-term evolution, as predicted by Agafontsev and Zakharov [Nonlinearity 28, 2791 (2015).NONLE50951-771510.1088/0951-7715/28/8/2791]. Finally, we demonstrate experimentally and numerically that the autocorrelation of the optical power g^{(2)}(τ) exhibits some unique oscillatory features typifying the nonlinear stage of the noise-driven modulation instability and of integrable turbulence.

13.
Phys Rev Lett ; 122(5): 054101, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30822036

RESUMO

We report an optical fiber experiment in which we study the nonlinear stage of modulational instability of a plane wave in the presence of a localized perturbation. Using a recirculating fiber loop as the experimental platform, we show that the initial perturbation evolves into an expanding nonlinear oscillatory structure exhibiting some universal characteristics that agree with theoretical predictions based on integrability properties of the focusing nonlinear Schrödinger equation. Our experimental results demonstrate the persistence of the universal evolution scenario, even in the presence of small dissipation and noise in an experimental system that is not rigorously of an integrable nature.

14.
Phys Rev E ; 98(2-1): 022219, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30253473

RESUMO

The data recorded in optical fiber and in hydrodynamic experiments reported the pioneering observation of nonlinear waves with spatiotemporal localization similar to the Peregrine soliton are examined by using nonlinear spectral analysis. Our approach is based on the integrable nature of the one-dimensional focusing nonlinear Schrödinger equation (1D-NLSE) that governs at leading order the propagation of the optical and hydrodynamic waves in the two experiments. Nonlinear spectral analysis provides certain spectral portraits of the analyzed structures that are composed of bands lying in the complex plane. The spectral portraits can be interpreted within the framework of the so-called finite gap theory (or periodic inverse scattering transform). In particular, the number N of bands composing the nonlinear spectrum determines the genus g=N-1 of the solution that can be viewed as a measure of complexity of the space-time evolution of the considered solution. Within this setting the ideal, rational Peregrine soliton represents a special, degenerate genus 2 solution. While the fitting procedures previously employed show that the experimentally observed structures are quite well approximated by the Peregrine solitons, nonlinear spectral analysis of the breathers observed both in the optical fiber and in the water tank experiments reveals that they exhibit spectral portraits associated with more general, genus 4 finite-gap NLSE solutions. Moreover, the nonlinear spectral analysis shows that the nonlinear spectrum of the breathers observed in the experiments slowly changes with the propagation distance, thus confirming the influence of unavoidable perturbative higher-order effects or dissipation in the experiments.

15.
Phys Rev Lett ; 119(3): 033901, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28777604

RESUMO

We report experimental confirmation of the universal emergence of the Peregrine soliton predicted to occur during pulse propagation in the semiclassical limit of the focusing nonlinear Schrödinger equation. Using an optical fiber based system, measurements of temporal focusing of high power pulses reveal both intensity and phase signatures of the Peregrine soliton during the initial nonlinear evolution stage. Experimental and numerical results are in very good agreement, and show that the universal mechanism that yields the Peregrine soliton structure is highly robust and can be observed over a broad range of parameters.

16.
Phys Rev Lett ; 118(23): 233901, 2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28644639

RESUMO

We examine integrable turbulence (IT) in the framework of the defocusing cubic one-dimensional nonlinear Schrödinger equation. This is done theoretically and experimentally, by realizing an optical fiber experiment in which the defocusing Kerr nonlinearity strongly dominates linear dispersive effects. Using a dispersive-hydrodynamic approach, we show that the development of IT can be divided into two distinct stages, the initial, prebreaking stage being described by a system of interacting random Riemann waves. We explain the low-tailed statistics of the wave intensity in IT and show that the Riemann invariants of the asymptotic nonlinear geometric optics system represent the observable quantities that provide new insight into statistical features of the initial stage of the IT development by exhibiting stationary probability density functions.

17.
Nat Commun ; 7: 13136, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713416

RESUMO

Optical fibres are favourable tabletop laboratories to investigate both coherent and incoherent nonlinear waves. In particular, exact solutions of the one-dimensional nonlinear Schrödinger equation such as fundamental solitons or solitons on finite background can be generated by launching periodic, specifically designed coherent waves in optical fibres. It is an open fundamental question to know whether these coherent structures can emerge from the nonlinear propagation of random waves. However the typical sub-picosecond timescale prevented-up to now-time-resolved observations of the awaited dynamics. Here, we report temporal 'snapshots' of random light using a specially designed 'time-microscope'. Ultrafast structures having peak powers much larger than the average optical power are generated from the propagation of partially coherent waves in optical fibre and are recorded with 250 femtoseconds resolution. Our experiment demonstrates the central role played by 'breather-like' structures such as the Peregrine soliton in the emergence of heavy-tailed statistics in integrable turbulence.

18.
Sci Rep ; 6: 29238, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27385164

RESUMO

The nonlinear Schrödinger equation (NLSE) stands out as the dispersive nonlinear partial differential equation that plays a prominent role in the modeling and understanding of the wave phenomena relevant to many fields of nonlinear physics. The question of random input problems in the one-dimensional and integrable NLSE enters within the framework of integrable turbulence, and the specific question of the formation of rogue waves (RWs) has been recently extensively studied in this context. The determination of exact analytic solutions of the focusing 1D-NLSE prototyping RW events of statistical relevance is now considered as the problem of central importance. Here we address this question from the perspective of the inverse scattering transform (IST) method that relies on the integrable nature of the wave equation. We develop a conceptually new approach to the RW classification in which appropriate, locally coherent structures are specifically isolated from a globally incoherent wave train to be subsequently analyzed by implementing a numerical IST procedure relying on a spatial periodization of the object under consideration. Using this approach we extend the existing classifications of the prototypes of RWs from standard breathers and their collisions to more general nonlinear modes characterized by their nonlinear spectra.

19.
Opt Lett ; 40(13): 3101-4, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26125377

RESUMO

We report the experimental study of statistical properties of partially coherent waves emitted by a Raman fiber laser operating in the normal dispersion regime. Using an asynchronous optical sampling technique, we accurately measure the probability density function of the optical power of the Stokes wave that exhibits strong and fast fluctuations. As predicted from numerical simulations presented by Randoux et al. [Opt. Lett.36, 790 (2011)], the statistical distributions of the intracavity Stokes power are found to be very different before and after reflection on the cavity Bragg mirrors. In particular, the Stokes wave incident on fiber Bragg grating mirrors exhibits statistics with tails that are much lower than those defined by the normal law.

20.
Phys Rev Lett ; 114(14): 143903, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910126

RESUMO

We report optical experiments allowing us to investigate integrable turbulence in the focusing regime of the one-dimensional nonlinear Schrödinger equation (1D NLSE). In analogy with broad spectrum excitation of a one-dimensional water tank, we launch random initial waves in a single mode optical fiber. Using an original optical sampling setup, we measure precisely the probability density function of optical power of the partially coherent waves rapidly fluctuating with time. The probability density function is found to evolve from the normal law to a strong heavy-tailed distribution, thus revealing the formation of rogue waves in integrable turbulence. Numerical simulations of 1D NLSE with stochastic initial conditions quantitatively reproduce the experiments. Our numerical investigations suggest that the statistical features experimentally observed rely on the stochastic generation of coherent analytic solutions of 1D NLSE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...